

# Miniature Thermal Batteries for Low-Current Applications



Frank C. Krieger 301-394-3115 fkrieger@arl.army.mil

Army Research Laboratory
17 April 2001



## Present Thermal Battery Technology



- Thermal batteries have been miniaturized for high-current (1 to 4 A/cm²) operation.
  - Nuclear applications.
  - Missiles.
  - Artillery applications (high spin).
  - Volumetric energy density of high spin thermal batteries has been increased by a factor of 8 since FY96 at ARL.
- 2. High reliability and mature technology could be applied to low-current operation.





#### Low-Current Thermal Battery Goals



Small size. 0.1 cm<sup>3</sup> - (0.2 in. dia. x 0.2 in. tall)
 0.8 cm<sup>3</sup> - (0.4 in. dia. x 0.4 in. tall)

Low current. (50 mA to 20 mA, 3 to 10 V)

Moderate lifetime. (5 to 10 minutes)

High reliability. (0.9990 at 95% confidence)

Long shelf life. (20 years)



#### **Miniaturization Method**



- 1. Heat transfer is a major problem.
  - High temperature molten salt electrochemistry.
  - Control heat loss rates.
  - Control cell heat generation rates.
- 2. Optimize a low-current battery design.
  - Calculate thermal lifetime.
  - Operating cell temp. range is 325 to 700° C.
  - Ambient temp. range is
     -43 to +63° C.
  - 4 thermal cells (7.2 V to 5.4 V at 1.5 mA).





#### **Heat Transfer Considerations**



- 1. Thermal conductivities could be reduced by a factor of 8 in production thermal batteries.
  - Improved commercial insulators.
  - Improved chemical processing.
  - Use of gas gettering agents.
- 2. Construction improvements facilitate miniaturization.
  - Single pellet thermal batteries.
  - Control of heat generation.
  - New electrochemical systems.





# Present Miniaturized Thermal Battery



**○ Volume 9.38 cm³.**

case is 0.90 inch diameter inch long

thermal cell diameter is

Energy density at 1.5 mA dr 0.090 Wh/l.

320 s thermal lifetime

 Present battery pellets, gas environment, chemical exot reactions.

Cells contain 72.0 times required electrochemical capacity at 1.5 mA drain.



## Miniaturized Thermal Battery (2 to 5 Years)



- Volume 0.552 cm<sup>3</sup>.
  - case is 0.35 inch diameter x 0.35 inch long
  - thermal cell diameter is 0.2 inch
- Energy density 1.61 Wh/l at 1.5 mA drain.
  - 338 s thermal lifetime
- Multi-pellet construction, improved gas environment from improved chemical processing, some gas gettering.
- Cells contain 3.41 times required electrochemical capacity at 1.5 mA drain.



# Miniaturized Thermal Battery (5 to 10 Years)



- Volume 0.129 cm³.
  - case is 0.20 inch diameter x 0.25 inch long
  - thermal cell diameter is 0.12 inch
- Energy density 11.5 Wh/l at 1.5 mA drain.
  - 566 s thermal lifetime
- Single pellet battery construction, improved chemical processing and gas gettering, along with increased internal heat generation.
- Cells contain 1.10 times required electrochemical capacity at 1.5 mA drain.



#### **Energy and Power Densities**



|                 | Present | Thermal | <b>Thermal</b> | Present |
|-----------------|---------|---------|----------------|---------|
|                 | Thermal | 2 to 5  | 5 to 10        | SDF     |
|                 |         | Years   | Years          | Battery |
| Wh/I            | 0.090   | 1.61    | 11.5           | 0.744   |
| Wh/kg           | 0.061   | 0.738   | 4.19           | 0.159   |
| W/I             | 1.01    | 17.1    | 73.4           | 9.92    |
| W/kg            | 0.685   | 7.85    | 26.6           | 2.11    |
| cm <sup>3</sup> | 9.38    | 0.552   | 0.129          | 0.128   |

Thermals operate at 7.2 to 5.4 V and 1.5 mA.



#### Lifetime and Pulse Characteristics



|                            | Present<br>Thermal | Thermal<br>2 to 5<br>Years | Thermal<br>5 to 10<br>Years | Present<br>SDF<br>Battery |
|----------------------------|--------------------|----------------------------|-----------------------------|---------------------------|
| Life (s)                   | 320                | 338                        | 566                         | 270                       |
| Pulse<br>(kW/l)            | 2.10               | 8.97                       | 13.8                        | 0.027                     |
| Over-<br>design<br>(Ratio) | 72.0               | 3.41                       | 1.10                        |                           |

Thermals operate at 7.2 to 5.4 V and 1.5 mA.



## Thermal Battery Starters Require Miniaturization



1. Inertial White starter is 0.312 inch diameter x 1.05 inch long (1.32 cm<sup>3</sup> and 6.5 g).

- Inertial M42 C-1 primer is 0.175 inch diameter x 0.120 inch long (0.0473 cm<sup>3</sup> and 0.20 g).
- 3. Inertial M42 C-1 primer starter is similar in size and mass to the White starter. One primer starter might be used for several inertial primers.
- 4. Electrical squib is 0.205 inch diameter x 0.185 inch long (0.100 cm<sup>3</sup> and 0.56 g).



#### **Conclusions**



- 1. Small thermal batteries can be made the size of present thermal battery squib initiators.
- 2. Thermal batteries the size of present squib initiators can operate for several minutes at mA and mA current drains.
- 3. Low-current thermal batteries can be used in miniaturized fuzes where they can supply large pulse currents.